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A B S T R A C T

When suspensions are subject to non-homogeneous shear, particles migrate towards lower-shear rate regions
of the flow due to the anisotropy on the particle phase’s normal stress. This phenomenon leads to phase
segregation, complicating the interpretation of rheological experimental data for characterising those suspen-
sions. This work presents an improved version of the well-known Suspension Balance Model (SBM), featuring
a frame-independent formulation of the particles’ normal stress with an improved momentum interpolation
scheme that prevents numerical oscillations. The particle’s stress model also includes a local formulation for
the microscopically generated extra stress, ensuring grid convergence. Our model, implemented in OpenFOAM-
v7®, successfully simulated various shear-dominated flows. The simulated Couette rheometric data showed that
the characterisation of suspensions from such data could not capture their non-Newtonian behaviour. Besides,
the obtained rheological model for the suspensions depended on the geometry of the rheometer, being unable
to predict the flow of the same suspension in different conditions and geometries.

1. Introduction

Suspension flows are present in various natural and industrial pro-
cesses, as in the pharmaceutical, cosmetic, construction, and food
industries (Schroën et al., 2017; Drijer et al., 2018; Guazzelli and
Pouliquen, 2018). In the oil and gas industry, hydraulic fracturing
uses suspensions of solid proppants in the fracking fluid to prevent the
fractures’ closing after depressurisation of the well (Dontsov and Peirce,
2014). Hydrodynamic effects may dominate suspension flows, charac-
terising the Stokesian regime with negligible Brownian and colloidal
effects. In this specific regime, shear-induced migration and phase
segregation occur if the flow is subject to non-homogeneous shear,
and the non-homogeneous field of particles’ concentration results in an
apparent viscosity field.

Suspension rheology studies date back to Einstein (1906), who
observed that the viscosity of dilute suspensions depended on the par-
ticles’ volumetric phase fraction. In the following years, many authors
attempted to measure the viscosity of suspensions and extrapolate the
work of Einstein (1906) to more concentrated suspensions. However, as
pointed out by Gadala-Maria and Acrivos (1980), these studies showed
significant scattered results. By performing a series of experiments in
a Couette cell with neutrally buoyant suspensions, Gadala-Maria and
Acrivos (1980) observed deviations from the expected behaviour of a
Newtonian fluid, which increased with the dispersed-phase fraction,
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and they assigned this behaviour to a shear-induced anisotropy in the
structure of the suspended particles.

Experiments conducted by Leighton and Acrivos (1987) provided
new significant insights into the shear-induced migration mechanisms.
The authors described the phenomena as diffusive fluxes in the direc-
tion normal to the shearing surface towards lower shear-rate regions
caused by the irreversible displacement of the particles as they interact,
proposing empirical equations for these diffusive fluxes. Phillips et al.
(1992) adapted these equations to predict the time evolution of the
particles’ concentration field. This extended formulation, known as the
Diffusive Flux Model (DFM), links the diffusive equation for the evolu-
tion of the solid-phase fraction field to the conservation equations of the
suspension, modelled as an effective Newtonian fluid with properties
depending on the local concentration. However, the DFM of Phillips
et al. (1992) assumes that migration occurs in the normal direction to
the shearing surface. That is true for some specific applications, such
as Stokes flow in concentric Couette rheometers, pipes and channels
but not for the eccentric Couette flow and flows in cone-and-plate and
torsional parallel-plate rheometers.

Nott and Brady (1994) introduced a new approach called the Sus-
pension Balance Model (SBM). Drawing an analogy with molecular
systems, these authors macroscopically describe the particles as a con-
tinuous phase since they evolve according to Newton’s equations of
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motion just as molecules do and obtain averaged transport equations
for the dispersed phase. They define a solid-phase effective stress tensor
that accounts for non-Newtonian normal and viscous shear stresses,
depending on the solid-phase fraction through a particle viscosity
coefficient. Later, Morris and Boulay (1999) addressed an anisotropic
formulation of the particles’ stress when studying the application of the
SBM to curvilinear flows, also providing an empirical description of the
functional forms for the dependency of the shear and normal stresses
of the suspension on the solid-phase fraction. The resulting model was
then used to predict the dispersed-phase fraction for suspension flows
in different conditions and presented better predictability than the
Diffusive Flux Model of Phillips et al. (1992).

Nevertheless, Morris and Boulay (1999) accounted for the nor-
mal stress anisotropy in a way that rendered their model frame-
dependent. Miller et al. (2009) formulated a two-dimensional frame-
invariant form of the particles’ normal stress tensor based on a tension-
compression local coordinate system. These authors applied their for-
mulation in simulations of channel flows with sharp-edged contraction
and expansion and the flow over a cavity. Dbouk et al. (2013a) used
this frame-independent formulation to simulate the resuspension of an
initially settled suspension in a 2D Couette cell, considering buoyancy
effects. More recently, Badia et al. (2022) developed a model similar to
the SBM, with a frame-invariant suspension stress formulation based on
the model for second-order fluids, commonly used in polymer rheology.
The models of Miller et al. (2009) and Badia et al. (2022) are not
only frame-invariant but are also designed to predict the suspension
behaviour in non-viscosimetric flows with more complex kinematics.
Alternatively, adapting the normal stress formulation of Morris and
Boulay (1999) to a two-fluid model, Municchi et al. (2019b) developed
a simpler frame-invariant model by replacing the unit vectors originally
used to define the anisotropic tensor with unit vectors defined using the
calculated velocity field for the particles’ phase. They validated their
proposed frame-invariant formulation for the resuspension case of an
initially settled suspension in a 2D Couette cell and the suspension flow
in a 3D symmetric herringbone channel.

Phillips et al. (1992) observed that the DFM did not yield the
correct behaviour when the shear rate vanishes, as in the centre of
a Poiseuille flow, as the model always predicted a maximum packing
concentration. Nott and Brady (1994) highlighted this same limitation
regarding the SBM. Even though the macroscopic shear rate is zero, in
such regions, the finite size of the particles and the fluctuations on the
particle-size scale generate motion and, consequently, stress. As the
shear rate approaches zero at the centre line of Poiseuille flows, the
DFM and the SBM predict that the solid-phase fraction should approach
maximum packing with a diverging derivative, exhibiting a nonphysical
cusp in the solid-phase fraction profile. Thus, it is necessary to include
in the particles’ stress tensor a term that accounts for this extra stress.
Despite acknowledging this problem, Phillips et al. (1992) did not
attempt to develop a solution. Nott and Brady (1994) proposed an
isotropic non-local formulation based on the definition of the suspension
temperature, which represents a scalar measurement of the fluctuations
of the particles’ mean velocity, generated in regions of high shear rates
and diffusing to regions of lower shear rates. Nonetheless, this approach
requires additional closing parameters and the solution of an additional
transport equation for the suspension temperature.

Shortly after, Mills and Snabre (1995) presented an algebraic for-
mulation considering that the extra stress is transmitted through a
network of particles interacting via strong lubrication forces over a
correlation distance. Morris and Boulay (1999) also employed an alge-
braic formulation by spatially averaging the shear rate over a volume
element. Miller and Morris (2006) further simplified the formulation
of Morris and Boulay (1999), proposing an equation for the associated
extra shear rate that gained popularity, being used in many of the most
recent suspension rheology studies using the SBM and DFM (Dbouk
et al., 2013a; Yadav et al., 2015; Siqueira and de Souza Mendes,
2019; Kang and Mirbod, 2020). In these algebraic formulations, the

final stress model is dependent on the geometry of the flow, e.g., the
correction term is considered for Poiseuille but not for Couette flows.
Including the extra stress prevents the divergence of the dispersed-
phase fraction profile, even though this is not always necessary. As the
physics behind it is always valid, there is little sense in using this term
only for some flow configurations.

Using the formulation of Morris and Boulay (1999), the SBM ac-
curately describes the behaviour of viscosimetric suspension flows, in-
cluding the flows in cone-and-plate and torsional parallel-plate rheome-
ters, for which the DFM of Phillips et al. (1992) fails. Fang et al.
(2002) proposed an anisotropic normal stress formulation similar to
the one of Morris and Boulay (1999) and incorporated it into the
DFM of Phillips et al. (1992). This modified formulation predicts the
correct qualitative behaviour of flows in cone-and-plate and torsional
parallel-plate rheometers. However, without an extra stress term in the
DFM formulation, it still provided results with a diverging derivative
of the concentration profile at the centre of Poiseuille flows. Fang et al.
(2002) also incorporated their formulation of the anisotropic normal
stresses to the SBM of Nott and Brady (1994), adopting the ‘‘suspension
temperature’’ approach to account for the extra stress. These authors
extensively discussed and compared the application of the modified
DFM and SBM to a series of benchmark viscometric flows, including
the steady-state Couette, cone-and-plate, circular and planar Poiseuille
flows, and the transient flows in a Couette rheometer, eccentric Couette
flow, and piston-driven flow.

For eccentric Couette flows, depending on the eccentricity ratio (the
distance between the centres of the cylindrical surfaces normalised by
their radii difference), a recirculating flow region arises in the wider
portion of the gap (Phan-Thien et al., 1995). Using an adaptation of the
DFM of Phillips et al. (1992) for two-dimensional flows, Fang and Phan-
Thien (1995) simulated the eccentric Couette flow with an eccentricity
of 0.5 but could not obtain steady-state results in the presence of
the recirculating flow region due to numerical instabilities within this
region. Mirbod (2016) studied the eccentric Couette flow for several ec-
centricity configurations using an anisotropic SBM formulation without
accounting for the extra stress, obtaining stable steady-state results for
the same cases simulated by Fang and Phan-Thien (1995). However,
for eccentricity ratios above 0.842, the simulations of Mirbod (2016)
became unstable. Even though the author did not investigate this issue
further, she hypothesised that the instabilities were related to steep
gradients on the normal stresses.

Recent studies extended the application of the SBM to more com-
plex cases. Kang and Mirbod (2021, 2023) applied an anisotropic
formulation of the SBM with no extra stress to simulate flow insta-
bilities and transitions in Taylor–Couette flows. These are intrinsically
3D flows with complex recirculating patterns for Reynolds numbers
above 

(

102
)

(Majji et al., 2018; Ramesh et al., 2019; Ramesh and
Alam, 2020). Consequently, Taylor–Couette flows do not occur in the
Stokes regime, and the simulation of these cases also requires a frame-
invariant formulation of the normal stresses to cope with changes in the
flow direction. In the works of Kang and Mirbod (2021, 2023) using
the SBM, the formulation adopted for the normal stress anisotropy
considers a unidimensional angular velocity despite the changes in the
flow direction due to the formation of Taylor instabilities.

Also recently, Lu and Christov (2023) used physically-informed
neural networks to estimate the ratio of the DFM parameters using
available experimental data for Couette flow (Phillips et al., 1992)
and Poiseuille 2D channel flow (Koh et al., 1994) of non-Brownian
suspensions. Their estimate agreed with Phillips et al. (1992) results
for the Couette flow but differed from those for the Poiseuille 2D
channel flow, which also vary with the bulk particles’ volume fraction.
Therefore, they showed that the DFM needs parameters fitting for
each flow configuration, which stresses the importance of a model for
suspension flow that does not depend on the flow configuration.

Alternatively to the diffusive flux and suspension balance models
for dense suspension flows, Boyer et al. (2011) introduced a frictional
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approach derived from the theory of dry granular flows. These au-
thors adapted the existing models for dry granular systems to model
the stresses in a monodisperse suspension with a jamming limit, i.e.,
maximum packing fraction, inferior to the random close packing (RCP)
limit. Lecampion and Garagash (2014) later extended this formulation
to allow for compaction of the particles beyond the jamming limit up
to the RCP threshold. Through MRI measurements of concentrated sus-
pension flows in a circular cross-section pipe, Oh et al. (2015) showed
that the particles compact and achieve the random close packing limit,
forming a solid-like plug at the centre of the pipe. The authors adapt
the frictional model as presented by Lecampion and Garagash (2014)
to account for the so far neglected normal stress anisotropy, comparing
their experimental data to the predictions of this adapted formulation
and the original isotropic formulation of Lecampion and Garagash
(2014).

All approaches presented so far treat the suspension as an effective
fluid, an approximation that only holds for systems with small slip
velocities. The study of shear-induced migration is also interesting for
multiphase fluid dynamics, where fluid and particles are two inter-
penetrating phases with their transport equations. Consequently, there
is no need to limit the application of the model to systems of rapid
relaxation. Using a rather similar approach to the Diffusive Flux Model
in the multiphase framework, Tiwari et al. (2009) and Drijer et al.
(2018) introduced the effects of shear-induced particle migration in the
momentum conservation equations of both fluid and solid phases as
a driving force and applied the proposed models to study suspension
flow in membrane tubes used for nano- and micro-filtration processes.
Also adapting a mixture model to the two-fluid model framework, the
frictional rheology model of Boyer et al. (2011) was used by Dontsov
and Peirce (2014) to predict the steady flow of a slurry in a rock
fracture, considering buoyancy effects. These authors modified the
particle-phase stress to include the anisotropic normal stress terms from
the formulation of Morris and Boulay (1999). Inkson et al. (2017) used
a similar strategy, modifying the general Eulerian model for two-phase
flows to include the suspension stress model of Morris and Boulay
(1999) and simulating the suspension flow in a 2D Couette cell, a 3D
circular cross-section pipe, and an asymmetric channel bifurcation. In
their final model, however, the anisotropy of the normal stresses is dis-
regarded. Municchi et al. (2019b) also developed a modified Eulerian
model by replacing the stress tensor of the dispersed phase with the
particles’ stress tensor of Morris and Boulay (1999), accounting for the
anisotropy of the normal stresses in a frame-invariant formulation.

This work aimed to improve the current formulation of the SBM
focusing on shear-dominated flows of dense, non-Brownian suspen-
sions of monodispersed spherical particles on a Newtonian fluid of
matching density. The improved model was implemented in Open-
FOAM, assuming the suspension flow in the Stokes regime, creating
a robust computational tool that provides the simulation’s results at
a reasonably low computational cost. The resulting solver was used to
validate the improved model against experimental results found in the
literature and applied to study the impacts of shear-induced migration
on determining the apparent viscosity of suspensions.

The SBM improvements include a new local extra stress model and a
correction of the normal stresses in regions with near-uniform velocity.
The SBM implementation improvements are a frame-invariant formu-
lation of the normal stresses, an enhanced momentum interpolation
scheme, and the correction needed to simulate open conduits using
cyclic domains.

We organised this text as follows. Section 2 describes the SBM equa-
tions, including our proposed modifications. We proposed a new local
extra stress model in Section 2.2.1 and a frame-invariant anisotropic
stress tensor model in Section 2.2.3. Section 3 describes the numerical
procedure, presenting an improved momentum interpolation procedure
in Section 3.1, and a procedure for the simulations of suspension flows
in open conduits using cyclic domains in Section 3.3. Section 4 presents
the simulated cases and the discussion of their results is presented in
Section 5. Section 6 presents our conclusions.

2. Methodology

The suspension balance model is valid for suspension flows with a
fast relaxation of the particles’ velocities, which allows its representa-
tion as a single effective fluid. The particles’ Stokes number represents
the ratio of the characteristic time of the motion of a suspended particle
to the characteristic time of the suspension flow, and it must be small
for holding the single effective fluid approximation (Coussot and Ancey,
1999):

𝑆 𝑡 = 𝜌𝑝𝑎2𝛾̇
3𝜋 𝜇𝑓

≪ 1, (1)

where 𝜌𝑝 is the particles’ density, 𝑎 is the particle radius, 𝛾̇ is the shear
rate, and 𝜇𝑓 is the viscosity of the liquid forming the continuous-phase.
The subscripts 𝑝, 𝑓 , and 𝑠 denote averaged properties for the particles’
phase, fluid or suspension, respectively. The SBM also assumes the
particle–fluid drag force in the Stokes regime, where there is negligible
inertia, which is satisfied if the particle’s Reynolds number is much
smaller than one (Nott and Brady, 1994):

𝑅𝑒𝑝 =
𝜌𝑓 𝑎2𝛾̇
𝜇𝑓

≪ 1. (2)

where 𝜌𝑓 is the density of the continuous phase.
Moreover, for non-Brownian suspension flow, the Péclet number,

which represents the ratio of viscous to Brownian forces, should be
large (Coussot and Ancey, 1999):

𝑃 𝑒 = 6𝜋 𝜇𝑓 𝛾̇ 𝑎3
𝑘𝐵𝑇

≫ 1, (3)

where 𝑇 is the temperature and 𝑘𝐵 is the Boltzmann constant.

2.1. Conservation equations

For an incompressible suspension of neutrally buoyant particles, the
resulting particle-phase mass conservation equation is
𝜕 𝜙
𝜕 𝑡 + 𝐮𝑠 ⋅ ∇𝜙 = −∇ ⋅ 𝐉, (4)

where 𝜙 is the dispersed-phase fraction and 𝐮𝑠 is the suspension ve-
locity. The particles’ migration flux is defined as 𝐉 = 𝜙

(

𝐮𝑝 − 𝐮𝑠
)

. For
𝑆 𝑡 ≪ 1, the particles’ momentum equation, considering only the drag
force between the phases, gives the following expression for 𝐉:

𝐉 =
2𝑎2𝑓 (𝜙)
9𝜇𝑓

∇ ⋅ 𝐒𝑝, 𝑓 (𝜙) =
(

1 − 𝜙
𝜙𝑚

)

(1 − 𝜙)𝛼−1 , (5)

in which 𝐒𝑝 is the particles’ phase stress tensor and 𝑓 (𝜙) is the hin-
drance function, modelled as given by Miller and Morris (2006) with
𝛼 = 4, in which 𝜙𝑚 represents the maximum packing fraction.

To obtain a fast computational simulation tool, we restrict the
present implementation of the SBM to flows in the Stokes regime.
Therefore, by averaging the transport equations over the volume of
the suspension, one can obtain its mass and momentum conservation
equations:

∇ ⋅ 𝐮𝑠 = 0, (6)

∇ ⋅ 𝐒𝑠 = 0. (7)

Eqs. (4), (6) and (7) constitute the set of the SBM transport equa-
tions that are solved for the dispersed-phase fraction, the pressure, and
the suspension’s velocity, respectively.

2.2. Stress tensor models

The stress tensor of the suspension is given by the sum of the
particle- and fluid-phase stress tensors:

𝐒𝑠 = 𝐒𝑝 + 𝐒𝑓 . (8)
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For a Newtonian incompressible fluid as the continuous phase, we have:

𝐒𝑓 = −𝑝𝐈 + 2𝜇𝑓𝐄, (9)

where 𝑝 is the pressure and the rate of strain tensor is 𝐄 = 1
2[

∇𝐮𝑠 + (∇𝐮𝑠)𝑇
]

.
Morris and Boulay (1999) modelled the particles’ stress tensor

considering both shear and normal contributions:

𝐒𝑝 = 2𝜇𝑝𝐄 + 𝐒𝑛𝑝. (10)

They modelled the normal stress tensor as:

𝐒𝑛𝑝 = −𝜇𝑛𝛾̇𝐐, (11)

in which the shear rate is calculated by 𝛾̇ =
√

2𝐄 ∶ 𝐄 and 𝐐 is the
anisotropic stress tensor defined by Morris and Boulay (1999):

𝐐 =
3
∑

𝑖=1
𝜆𝑖𝐞̂𝑖𝐞̂𝑖, (12)

where the unit vectors 𝐞̂1, 𝐞̂2 and 𝐞̂3 represent the directions of the flow
velocity, its gradient and vorticity, respectively.

Morris and Boulay (1999) assumed uniform values for 𝜆𝑖, 𝑖 = 1, 2
and 3, given by 𝜆1 = 1.0, 𝜆2 = 0.8 and 𝜆3 = 0.5, which ensures the
anisotropic behaviour and gives qualitative agreement with experimen-
tal data and Stokesian dynamics simulations results. We adopted those
constant values, except for the modification proposed to 𝜆3 in regions
of near-constant velocity, discussed in Section 2.2.3.

For some flow configurations, it is possible to choose a coordinate
system whose versors’ directions coincide with those of 𝐞̂1, 𝐞̂2 and
𝐞̂3, resulting in a frame-dependent formulation in which tensor 𝐐 is
uniform.

The viscosities 𝜇𝑝 and 𝜇𝑛 are known as the particle shear and normal
viscosities and depend on the dispersed-phase fraction. We followed the
rheological model of Morris and Boulay (1999), which gives:
𝜇𝑝
𝜇𝑓

= 2.5𝜙
(

1 − 𝜙
𝜙𝑚

)−1
+𝐾𝑠

(

1 − 𝜙𝑚
𝜙

)−2
(13)

and
𝜇𝑛
𝜇𝑓

= 𝐾𝑛

(

1 − 𝜙𝑚
𝜙

)−2
, (14)

with 𝐾𝑠 = 0.1 and 𝐾𝑛 = 0.75. Notice that Eq. (13) corrects a typo-
graphical error in the equation given by Morris and Boulay (1999). The
viscosity of the suspension is the sum of the shear viscosities of both
phases:
𝜇𝑠
𝜇𝑓

=
𝜇𝑝
𝜇𝑓

+ 1 = 2.5𝜙
(

1 − 𝜙
𝜙𝑚

)−1
+𝐾𝑠

(

1 − 𝜙𝑚
𝜙

)−2
+ 1. (15)

2.2.1. Extra stress contribution
To model the extra stress that is generated at the particle-size

scale and transmitted by lubrication forces throughout the particles’
assemblage, Miller and Morris (2006) added a constant value to the
calculated shear rate in Eq. (11), rewriting the particles’ normal stress
as

𝐒𝑛𝑝 = −𝜇𝑛
(

𝛾̇ + 𝛾̇𝑛𝑙
)

𝐐, (16)

and defining the non-local shear rate, 𝛾̇𝑛𝑙, using a dimensionally sound
relation using the particle size, 𝑎, the characteristic length of the
macroscopic flow, 𝐿𝑐 , and the maximum velocity magnitude of the
suspension, 𝑢𝑚𝑎𝑥, given by:

𝛾̇𝑛𝑙 = 𝑓 (𝜖)
𝑢𝑚𝑎𝑥
𝐿𝑐

, 𝜖 = 𝑎
𝐿𝑐

, (17)

assuming 𝑓 (𝜖) = 𝜖 for pipe or channel flows and 𝑓 (𝜖) = 0 otherwise.
As mentioned in Section 1, adding the extra shear rate term to

avoid the divergence of the predicted dispersed-phase fraction gradient
is only necessary for flows with a null shear rate region within the
domain. However, the physics of the stress transmission in concen-
trated suspensions responsible for generating the extra stress is always

present, so there is little sense in adding the correction term for some
flow configurations and not others.

Our proposed model defines the particles’ normal stress tensor by:

𝐒𝑛𝑝 = −𝜇𝑛𝛾̇𝐐 + 𝐒𝑒𝑝, 𝐒𝑒𝑝 = −𝜇𝑛𝛾̇𝑒𝐈, (18)

with 𝐒𝑒𝑝 representing the extra stress tensor and 𝛾̇𝑒 the associated extra
shear rate.

Since the extra stress represents the momentum transport at the
particle-size scale associated with the particles’ velocity fluctuations,
we modelled the extra shear rate as the magnitude of these velocity
fluctuations between neighbouring particles divided by their clearance,
𝑐. We assumed the particles’ velocity fluctuations to be proportional to
the local suspension velocity magnitude, yielding:

𝛾̇𝑒 =
𝑘
𝑐
√

𝐮𝑠 ⋅ 𝐮𝑠, (19)

where we adopted 𝑐 = 2𝑎 because the clearance between neighbouring
particles in a dense suspension is of the same order of magnitude as
their diameter, and the fitting parameter 𝑘 is an adjusted factor that
should be much smaller than one. It should be large enough to prevent
the divergence of the gradient of the dispersed-phase fraction where
𝛾̇ = 0 but small enough to be negligible in the flow regions with large
shear rates.

2.2.2. Effect of the extra stress contribution
To compare the different formulations for the particles’ normal

stress tensor, consider the steady-state and fully developed suspension
flow in a circular cross-section pipe, with 𝐞̂1 = 𝐞̂𝑧 and 𝐞̂2 = 𝐞̂𝑟 in
cylindrical coordinates. In these conditions, 𝐮𝑠 = 𝑢𝑠(𝑟)𝐞̂𝑧, there is no
𝑧 dependence, and the particles’ migration flux is null.

According to Eq. (5), the radial component of the particles’ migra-
tion flux, which must be zero, is given by:

𝐽𝑟 =
2𝑎2𝑓 (𝜙)
9𝜇𝑓

⎡

⎢

⎢

⎢

⎣

1
𝑟

𝑑
(

𝑟𝑆𝑝𝑟𝑟

)

𝑑 𝑟 −
𝑆𝑝𝜃 𝜃
𝑟

⎤

⎥

⎥

⎥

⎦

= 0. (20)

Since 𝑓 (𝜙) ≠ 0, ∀𝜙, the terms within the square brackets must be zero.
For the particles’ normal stress tensor model given by Eq. (11),

one can obtain the following expression for the derivative of the
concentration profile:
𝑑 𝜙
𝑑 𝑟 =

[

𝜆3 − 𝜆2
𝜆2𝑟

− 1
𝛾̇
𝑑 ̇𝛾
𝑑 𝑟

] (
1
𝜇𝑛

𝑑 𝜇𝑛
𝑑 𝜙

)−1
, (21)

which must be null at 𝑟 = 0 due to the axial symmetry. However,
for an arbitrary model for 𝜇𝑛(𝜙), Eq. (21) cannot represent the correct
behaviour of 𝑑 𝜙∕𝑑 𝑟 at 𝑟 = 0 as both terms within the square brackets
go to infinity at this point. The term (1∕𝛾̇)𝑑 ̇𝛾∕𝑑 𝑟 goes to infinity at 𝑟 = 0
because 𝛾̇ = |𝑑 𝑢𝑠∕𝑑 𝑟| is an even function of 𝑟 with a null value at this
point. Using the assumption of different uniform values for 𝜆2 and 𝜆3,
the term (𝜆3 − 𝜆2)∕𝑟 also goes to infinity at 𝑟 = 0.

The singularity of the first term within the square brackets of
Eq. (21) disappears if 𝜆2 = 𝜆3 within a region that includes 𝑟 = 0,
and the next section discusses this issue. The extra stress models should
remove the singularity of the second term, eliminating the non-physical
cusp of the 𝜙 profile at the centre-line of the pipe.

Repeating the derivation of the radial derivative of the dispersed-
phase fraction using the non-local model of Miller and Morris (2006)
for the extra stress contribution (Eq. (16)), one obtains
𝑑 𝜙
𝑑 𝑟 =

[

𝜆3 − 𝜆2
𝜆2𝑟

− 1
(

𝛾̇ + 𝛾̇𝑛𝑙
)

𝑑 ̇𝛾
𝑑 𝑟

]

(

1
𝜇𝑛

𝑑 𝜇𝑛
𝑑 𝜙

)−1
, (22)

since 𝑑 ̇𝛾𝑛𝑙∕𝑑 𝑟 = 0.
The same derivation using our proposed formulation given by

Eq. (18) gives:
𝑑 𝜙
𝑑 𝑟 = 1

(

𝜆2𝛾̇ + 𝛾̇𝑒
)

[

𝛾̇
(

𝜆3 − 𝜆2
)

𝑟
−

𝑑
(

𝜆2𝛾̇ + 𝛾̇𝑒
)

𝑑 𝑟

]

(

1
𝜇𝑛

𝑑 𝜇𝑛
𝑑 𝜙

)−1
, (23)
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where 𝛾̇𝑒 = 𝑘𝑢2𝑠∕(2𝑎) and 𝑑 ̇𝛾𝑒∕𝑑 𝑟 = 𝑘𝑢𝑠(𝑑 𝑢𝑠∕𝑑 𝑟)∕𝑎.
The second terms within the square brackets in Eqs. (22) and (23)

are not singular at 𝑟 = 0, but the first terms are as long as 𝜆2 ≠ 𝜆3. The
model for 𝜇𝑛(𝜙) can mitigate this singularity. Specifically, when using
the particles’ normal viscosity model from Eq. (14), (𝑑 𝜇𝑛∕𝑑 𝜙)∕𝜇𝑛 goes
to −∞ as 𝜙 ←←→ 𝜙𝑚. For dense suspensions, the particles’ phase fraction
can achieve this limiting value at 𝑟 = 0, leading to 𝑑 𝜙∕𝑑 𝑟 = 0 at this
point and a smooth 𝜙 profile.

In contrast to the non-local correction proposed by Miller and
Morris (2006), our formulation yields a non-constant profile for 𝛾̇𝑒,
which presents a minimum value of 𝛾̇𝑒 at the pipe (or channel) walls,
where its value is negligible when compared to the maximum shear
rate achieved at this region, and a maximum value at the centre line,
where the shear rate is null, flattening the phase-fraction profile. The
main advantage of the proposed extra stress with local extra shear rate,
Eqs. (18) and (19), is its general application to any flow configuration.

2.2.3. Frame-invariant formulation of the anisotropic stress tensor
As mentioned, the formulation of Morris and Boulay (1999) for the

anisotropic stress tensor 𝐐 is frame-dependent and restricted to a few
flow configurations. In a two-fluid model framework, Municchi et al.
(2019b) presented a frame-invariant formulation based on the local
calculation of the unit vectors defining 𝐐 in Eq. (12) from the particles’
phase velocity field. For the suspension balance model, we adapted this
formulation by defining these unit vectors using the suspension velocity
field:

𝐞̂1 =
𝐮𝑠

‖𝐮𝑠‖
, 𝐞̂3 =

∇ × 𝐮𝑠
‖∇ × 𝐮𝑠‖

, 𝐞̂2 = 𝐞̂1 × 𝐞̂3. (24)

The calculations expressed in Eq. (24) can be challenging in some
situations. For the pressure-driven flow in a cylindrical pipe, migration
of the particles towards the centre-line of the flow causes a blunting of
the velocity profile, creating a plateau, that is, a region where the con-
centration and velocity fields are uniform. In this region, the calculation
of the vorticity and velocity gradient directions are undefined, making
it impossible to determine the unit vectors 𝐞̂2 and 𝐞̂3 using Eq. (24).

However, any two orthogonal unit vectors on the velocity plateau’s
plane are suitable for defining the local coordinate system because,
in this situation, there is no longer a physical difference between
directions 𝐞̂2 and 𝐞̂3. Therefore, their respective coefficients 𝜆2 and 𝜆3
should be equal in a plateau region.

When using the local coordinate system from Eq. (24) in a region
where the velocity field is uniform or near uniform, this problem
presents itself as a numerical issue due to the difficulty of accurately
calculating 𝐞̂3. However, it also represents a modelling misconception
of the anisotropic stress tensor when its definition, given by Eq. (12),
assumes 𝜆2 ≠ 𝜆3 for all flow domain as proposed by Morris and Boulay
(1999). As shown by Eq. (23), 𝜆2 and 𝜆3 must be equal within a velocity
plateau region to avoid a singularity in the derivative of the particles’
concentration.

Understanding the implications of altering the definitions of unit
vectors and their coefficients, we refer to Eq. (23) for the derivative
of the particles’ phase fraction profile for the steady-state and fully
developed suspension flow in a circular cross-section pipe, using our
proposed model for the extra stress. This equation reveals that any
discontinuity in either 𝜆2 or 𝜆3 results in a 𝑑 𝜙∕𝑑 𝑟 discontinuity. Given
our conclusion that 𝜆2 and 𝜆3 must be equal in regions with 𝑑 𝜙∕𝑑 𝑟 = 0,
it is crucial to avoid such discontinuities. To achieve this, we have
opted to maintain 𝜆2 constant across the entire domain so we would
not disturb the two terms in Eq. (23) that depend on 𝜆2 only. Since
both coefficients should be equal inside the plateau region, we defined
a transition for 𝜆3 from its original value of 0.5 in the outer region of
the plateau to a value equal to 𝜆2 (0.8) inside the plateau. We employed
a logistic function to ensure the smoothness of the transition, avoiding
the discontinuities mentioned above in 𝑑 𝜙∕𝑑 𝑟.

A non-constant formulation for the coefficients 𝜆𝑖, 𝑖 = 1, 2 and
3 in Eq. (12) was studied experimentally by Dbouk et al. (2013b)

by performing a series of experiments for the torsional suspension
flow between parallel discs. However, in their proposed model, the
coefficients are written as a function of the particles’ phase fraction,
and the results show a larger difference between 𝜆2 and 𝜆3 as the
dispersed-phase fraction approaches the maximum packing. According
to the above analysis, this is the opposite of the physically expected
behaviour of a near-jammed suspension.

3. Numerical procedure

The set of coupled non-linear partial differential equations pre-
sented in the previous section was implemented and solved using
OpenFOAM-v7®, an open-source CFD package written in C++ that uses
the finite volume method to solve field equations (Weller et al., 1998).
Since we assumed the suspension incompressible, the formulation in
this section uses the modified pressure, 𝑝∗ = 𝑝∕𝜌, and the kinematic
viscosity, 𝜈 = 𝜇∕𝜌.

The standard pressure–velocity coupling algorithm in OpenFOAM
uses the Rhie and Chow (1983) interpolation method (see Supple-
mentary Material). This coupling algorithm may present difficulties
when high gradients exist in the force terms of the momentum equa-
tion (Passalacqua and Fox, 2011). The introduction of the normal
stress of the particulate phase, ∇ ⋅ 𝐒𝑛𝑝, similarly to a pressure gradient
term, with a non-uniform formulation for the anisotropic stress tensor
𝐐 enhances these problems, generating oscillations in the solid-phase
fraction profile. To remedy this, we followed the procedure described
by Municchi et al. (2019b), splitting the normal stress terms into
contributions from the spatial variations of the normal viscosity and the
shear rate. The resulting improved momentum interpolation scheme is
presented in the following subsection.

3.1. Improved momentum interpolation

Considering the suspension stress given by Eqs. (8), (9), and (10),
one can write the momentum conservation equation for the suspension
(Eq. (7)) as

− ∇2 (𝜈𝑠𝐮𝑠
)

− ∇ ⋅
[

𝜈𝑠
(

∇𝐮𝑠
)𝑇

]

+ ∇ ⋅ 𝐒𝑛𝑝 = −∇𝑝∗. (25)

Using the particles’ phase normal stress tensor with our extra stress
contribution given in Eq. (18), and splitting ∇ ⋅ 𝐒𝑛𝑝, Eq. (25) can be
rewritten as
− ∇2 (𝜈𝑠𝐮𝑠

)

− ∇ ⋅
[

𝜈𝑠
(

∇𝐮𝑠
)𝑇

]

+ 𝜈𝑛
[

∇ ⋅ (𝛾̇𝐐) + ∇𝛾̇𝑒
]

=

− ∇𝑝∗ − 𝛾̇
𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙 ⋅𝐐 − 𝛾̇𝑒

𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙.

(26)

Following the finite volume discretisation procedure as described
in Jasak (1996), partial discretisation of Eq. (26) results in the linear
system 𝐮𝑠 =  − ∇𝑝∗, in which  is the vector of source terms
and  is the coefficient matrix. With an implicit discretisation of the
Laplacian term in Eq. (26), discretisation of its left-hand side leads to
the momentum predictor equation:

𝐮𝑠 − = −∇𝑝∗ − 𝛾̇
𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙 ⋅𝐐 − 𝛾̇𝑒

𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙, (27)

where  is the diagonal part of  and vector  is defined by  =
( − )𝐮𝑠 + . The momentum predictor equation is solved for the
velocity 𝐮𝑠 using the pressure field from the previous iteration.

From Eq. (27), using the notation 1∕ ≡ −1, we obtain the
momentum correction equation:

𝐮𝑠 =



− 1


[

∇𝑝∗ + 𝛾̇
𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙 ⋅𝐐 + 𝛾̇𝑒

𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙

]

, (28)

in which the terms inside the square brackets on the right-hand side
are evaluated explicitly using the updated pressure field.

To obtain the pressure equation, the volumetric fluxes are calculated
from

𝜑 = (𝐮𝑠)𝑐 𝑓 ⋅ 𝐀 + 𝜑𝛴 +

[

(

∇𝑝∗



)

𝑐 𝑓
−
( 1


)

𝑐 𝑓 ∇𝑐 𝑓 𝑝∗
]

⋅ 𝐀, (29)
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in which 𝐀 = 𝐴𝐧̂ is a vector with magnitude equal to the cell’s face area,
𝐴, in the direction of its normal unit vector 𝐧̂, and the operator ∇𝑐 𝑓 𝑝∗
represents the pressure gradient at the cell face calculated using the
cell-centred values of the pressure at the neighbour control volumes.
For other occurrences, the subscript 𝑐 𝑓 indicates the interpolation from
the cell-centred values to the cell faces. The stress tensor correction, 𝜑𝛴 ,
is given as

𝜑𝛴 =

[

(

𝛾̇


𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙 ⋅𝐐 +

𝛾̇𝑒


𝑑 𝜈𝑛
𝑑 𝜙 ∇𝜙

)

𝑐 𝑓

−
( 1


)

𝑐 𝑓
(

𝛾̇
𝑑 𝜈𝑛
𝑑 𝜙

)

𝑐 𝑓
∇𝑐 𝑓𝜙 ⋅ (𝐐)𝑐 𝑓 −

( 1


)

𝑐 𝑓
(

𝛾̇𝑒
𝑑 𝜈𝑛
𝑑 𝜙

)

𝑐 𝑓
∇𝑐 𝑓𝜙

]

⋅ 𝐀.

(30)

Then, replacing 𝐮𝑠 from Eq. (28) into Eq. (29), the final expression for
the volumetric flux of the suspension at the cell faces is

𝜑 =

[

(


)

𝑐 𝑓 −
∇𝑐 𝑓 𝑝∗
𝑐 𝑓

−
( 1


)

𝑐 𝑓
(

𝛾̇
𝑑 𝜈𝑛
𝑑 𝜙

)

𝑐 𝑓
∇𝑐 𝑓𝜙 ⋅ (𝐐)𝑐 𝑓

−
( 1


)

𝑐 𝑓
(

𝛾̇𝑒
𝑑 𝜈𝑛
𝑑 𝜙

)

𝑐 𝑓
∇𝑐 𝑓𝜙

]

⋅ 𝐀.

(31)

Combining the mass conservation equation for the suspension,
Eq. (6), with Eq. (31), we find

∇𝐷⋅

[

(


)

𝑐 𝑓 ⋅ 𝐀 −
( 1


)

𝑐 𝑓
(

𝛾̇
𝑑 𝜈𝑛
𝑑 𝜙

)

𝑐 𝑓
∇𝑐 𝑓𝜙 ⋅ (𝐐)𝑐 𝑓 ⋅ 𝐀

−
( 1


)

𝑐 𝑓
(

𝛾̇𝑒
𝑑 𝜈𝑛
𝑑 𝜙

)

𝑐 𝑓
∇𝑐 𝑓𝜙 ⋅ 𝐀

]

= ∇𝐷 ⋅
[

( 1


)

𝑐 𝑓 ∇𝑐 𝑓 𝑝∗ ⋅ 𝐀
]

,

(32)

where the operator ∇𝐷(⋅) represents the numerical discretisation of the
divergent operator using the finite volume method. Eq. (32) is solved
for the pressure field, with the implicit discretisation of the Laplacian
of the pressure on the right-hand side and explicit evaluation of the
remaining terms.

Applying the finite volume discretisation procedure to the mass
conservation equation of the particulate phase (Eq. (4)) for an incom-
pressible suspension yields

𝑉
𝜙 − 𝜙𝑜

𝛥𝑡
+ ∇𝐷 ⋅

(

𝜙𝑐 𝑓𝜑
)

= −∇𝐷 ⋅
(

𝐉𝑐 𝑓 ⋅ 𝐀
)

, (33)

in which 𝑉 is the cell volume, 𝛥𝑡 is the time step, the superscript 𝑜 in-
dicates the previous time instant, and the time operator was evaluated
by the implicit Euler method. In Eq. (33) the divergence operator in
the left-hand side is evaluated implicitly and the one on the right-hand
side explicitly.

3.2. Implementation of the anisotropic stress tensor

In our formulation of the anisotropic tensor 𝐐, we identify the
presence of a flow region with an almost uniform velocity field by
evaluating the normalised magnitude of the velocity’s gradient:

𝜅 =
‖

‖

∇𝐮𝑠‖‖
max

(

‖

‖

∇𝐮𝑠‖‖
) . (34)

If 𝜅 is larger than the stipulated tolerance 𝜏, the unit vectors are defined
as described in Eq. (24). Otherwise, 𝐞̂1 and 𝐞̂2 are calculated using this
equation but with a redefined 𝐞̂3.

To redefine 𝐞̂3, we take the vector product of 𝐞̂1 with the three
unit vectors of the Cartesian coordinate system, 𝐞̂(𝑐)𝑖 , and calculate their
magnitudes, whose largest possible value is one, which occurs when
they are orthogonal. Thus, we choose the Cartesian unit vector 𝐞̂(𝑐)𝑗 that
gives the largest value of ‖𝐞̂1 × 𝐞̂(𝑐)𝑗 ‖, and define 𝐞̂3 = 𝐞̂1 × 𝐞̂(𝑐)𝑗 ∕‖𝐞̂1 × 𝐞̂(𝑐)𝑗 ‖.
Therefore, the new definition of the local coordinate system throughout

the whole domain is

𝐞̂1 =
𝐮𝑠

‖𝐮𝑠‖
, 𝐞̂3 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ × 𝐮𝑠
‖∇ × 𝐮𝑠‖

, 𝜅 ≥ 𝜏

𝐞̂1 × 𝐞̂(𝑐)𝑗

‖𝐞̂1 × 𝐞̂(𝑐)𝑗 ‖

, 𝜅 < 𝜏
, 𝐞̂2 = 𝐞̂1 × 𝐞̂3. (35)

For cases with plane symmetry, our numerical code identifies the
direction with the empty boundary conditions in OpenFOAM and ver-
ifies if 𝐞̂3 has this direction. If this happens, 𝐞̂1 and 𝐞̂2 are calculated
from:

𝐞̂1 =
𝐮𝑠

‖𝐮𝑠‖
, 𝐞̂2 = 𝐞̂1 × 𝐞̂3. (36)

The code also allows the option of making the unit vectors 𝐞̂𝑖 in Eq. (12)
equal to the Cartesian unit vectors, 𝐞̂(𝑐)𝑖 . Even though our local coor-
dinate system is left-handed due to the definition of 𝐞̂2, the usage of
the right-handed Cartesian system does not affect the calculation of 𝐐
because it is a diagonal tensor in the local coordinate system.

As discussed in Section 2.2.3, when 𝜅 < 𝜏, the coefficient 𝜆3
in Eq. (12) must tend to the 𝜆2 value of 0.8. We use a smoothing
function 𝑔(ℎ) to make the 𝜆3 value changes from 0.5 for a region where
𝜅 ≥ 𝜏 to 0.8 in the region where 𝜅 < 𝜏:

𝜆3 = 0.3𝑔(ℎ) + 0.5. (37)

The smoothing function was defined as

𝑔(ℎ) = 1
1 + 𝑒𝑏ℎ

, t anhℎ = 𝜅 − 𝜅0. (38)

Parameter 𝑏 in Eq. (38) determines the steepness of the transition and
should be positive, so 𝜆3 decreases as 𝜅 increases. The value of 𝜅0
defines the midpoint of the transition between the two regions with
different constant 𝜆3 values. To guarantee that this transition starts at
𝜅 = 𝜏, we admit a small error, 𝛿, in 𝑔(ℎ) at this position, which allows
us to relate the parameters using Eq. (38). Then, 𝜅0 is calculated by

𝜅0 = 𝜏 − t anh ℎ̂, ℎ̂ = 1
𝑏
ln
( 𝛿
1 − 𝛿

)

, (39)

and the model parameters to be defined are 𝜏, 𝑏 and 𝛿. We used 𝜏 =
0.07, 𝑏 = 150 and 𝛿 = 0.1% in all our simulations.

3.3. Fully-developed flow simulations using cyclic domains

A cyclic domain is a convenient geometrical simplification that
provides large speedups for simulating the fully developed steady-state
velocity and phase fraction profiles for flow in channels and pipes of
constant cross-section, 𝐴𝑐 . This domain represents a small duct length
with just one mesh cell, using periodic boundary conditions in the
flow direction. However, these simulations of multiphase flows need
corrections for the phase fraction fields, as explained below.

For the simulation of the developing flow in a duct using a lengthy
domain, one usually prescribes uniform velocity and phase fraction
profiles at the inlet boundary with magnitudes 𝑢 and 𝜙𝐼 𝑁 , respectively.
At the steady state, the mass conservation principle states that the flow
rate for each phase at any duct cross-section is the same. For the SBM
simulations, the suspension and particles’ phase flow rates are given by:

𝑄𝑠 = ∫𝐴𝑐

𝐮𝑠 ⋅ 𝐧̂ 𝑑 𝐴, 𝑄𝑝 = ∫𝐴𝑐

𝜙𝐮𝑠 ⋅ 𝐧̂ 𝑑 𝐴, (40)

where 𝐧̂ is a unit vector normal to the cross-section area and oriented in
the flow direction. For phases with equal density, the ratio of 𝑄𝑝∕𝑄𝑠 is
the mass-flow average of the particles’ phase fraction and must be the
same for all cross-sections at the steady state. For a uniform particles’
phase fraction at the inlet, conservation of the particle’s phase flow rate
yields

𝑄𝑝 = 𝜙𝐼 𝑁𝑄𝑠 = ∫𝐴𝑐

𝜙𝐮𝑠 ⋅ 𝐧̂𝑑 𝐴. (41)

The simulation in a cyclic domain starts imposing uniform velocity
and phase fraction profiles at the inlet boundary. However, the outlet
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Table 1
Discretisation schemes used in all performed simulations (en-
tries for the fvSchemes dictionary for the OpenFOAM cases).

Term Method

Gradient (default) leastSquares/Gauss linear
∇𝐮𝑠 leastSquares
Surface normal gradient corrected
Laplacian Gauss linear corrected
Divergent (default) Gauss linear
∇ ⋅

(

𝜙𝐮𝑠
)

Gauss limitedLinear 1
Interpolation linear
𝑑∕𝑑 𝑡 Euler

fields are continuously mapped to the inlet boundary along the solution
iterations. During the simulation, when the fields are not yet converged
to the fully developed steady-state flow, there is no guarantee that the
mass-flow average of the particles’ phase fraction at the outlet cross-
section would be equal to the value imposed by the initial conditions.
Thus, to accurately use the cyclic domain simplification, our code
applies the following correction to the particles’ phase fraction field
at the end of each time step:

𝜙∗ =
𝑄𝑠 𝜙𝐼 𝑁
𝑄𝑝

𝜙, (42)

where 𝜙∗ is the corrected particles’ phase fraction field. The reader
should note that 𝜙𝐼 𝑁𝑄𝑠∕𝑄𝑝 = 1 when the solution convergences to the
fully developed steady-state flow.

3.4. Solution algorithm

Eqs. (27), (32) and (33) were solved using an adaptation of the
SIMPLE coupling algorithm (Patankar and Spalding, 1972). Fig. 1
describes the algorithm, where 𝜀 represents all the calculated variables.
This algorithm also applies to the equivalent equations using Open-
FOAM’s standard momentum interpolation method. The number of
correction steps (nCorrectors) and non-orthogonal correction iterations
(nNonOrthCorrs) were chosen considering the characteristics of each
studied case, which are described in Section 4.

Table 1 gives the numerical schemes adopted for OpenFOAM’s
finite volume discretisation procedure. We chose to use schemes with
non-orthogonality corrections for the Laplacian and surface normal
gradient operators, which are applied only for simulations using non-
orthogonal grids. The Gauss limitedLinear 1 scheme is a flux-limited
blend of the upwind scheme (used in regions with high gradients)
and linear schemes, for which the coefficient value equal to 1 im-
plies the strongest limiter action. Depending on their performances,
we discretised the gradient terms using either the Gauss linear or
leastSquares methods. The only exception is ∇𝐮𝑠, for which leastSquares
was always employed. Greenshields (2019) gives more information on
the discretisation methods.

During the solution of each linear system, the residual is calculated
as the normalised absolute difference between the magnitude of the left
and right-hand sides of the equation. Then, the linear system is solved
iteratively until either this residual falls below the specified tolerance,
which is known as the absolute tolerance criteria, or until the ratio
between the current and the initial residuals falls below the specified
relative tolerance (Greenshields, 2019). Eq. (33) was solved using the
preconditioned bi-conjugate gradient method (PBiCG) with diagonal
incomplete LU (DILU) factorisation. For the pressure and velocity equa-
tions, we used the preconditioned conjugate gradient method (PCG)
with diagonal incomplete Cholesky factorisation (DIC), except for sim-
ulations with larger meshes (over 50000 grid cells), when we employed
the multigrid method using a Gauss–Seidel smoother for the pressure
equation solution. Table 2 summarises the linear solvers used for all
simulations and their convergence criteria. More information on the
linear system’s solution methods can be found in Golub and van Loan
(2013).

Table 2
Numerical methods used to solve the linear systems, their absolute and relative
tolerances (entries for the fvSolutions dictionary for the OpenFOAM cases).

𝜙 𝑝∗ 𝐮𝑠
Linear solver PBiCG PCG PCG
Pre-conditioner DILU DIC DIC
Absolute tolerance 10−9 10−10 10−9

Relative tolerance 0 0.001 0
Final relative tolerancea – 0 –

a For the final non-orthogonal correction.

Table 3
Description of the different suspensions considered in our simulations and their
properties.

Suspension 𝜙𝐼 𝑁 𝜙𝑚 𝜌𝑝 𝜌𝑓 𝜇𝑓 𝑎
ID (kg/m3) (kg/m3) (Pa⋅s) (μm)

S1 0.55 0.68 1182 1182 9.45 337.5
S2 0.50 0.68 1190 1190 4.8 50
S3 0.55 0.64 1056 1050 3.6 70
S4 0.35 0.64 1056 1050 3.6 70
S5 0.20 0.64 1056 1050 3.6 70
S6 0.50 0.68 1182 1182 4.95 337.5

4. Case description

We simulated channel and pipe Poiseuille flows, and concentric
and eccentric Couette flows, including conditions for which data were
available for validation. Table 3 summarises the properties for all con-
sidered suspensions. Fig. 2 depicts the flow configurations, for which
we described the details of the validation cases in the following. We
assured spatial convergence by performing a grid convergence study
for all validation cases. The Supplementary Material gives the details
of this procedure.

4.1. Concentric Couette flow

First, we simulated the flow of a suspension of poly-methyl
methacrylate (PMMA) particles dispersed in a Newtonian oil (sus-
pension S1) in a concentric wide-gap Couette cell, reproducing the
experimental study of Phillips et al. (1992). The simulations start
from a homogeneous suspension, and particles migrate as the inner
cylinder starts spinning with angular velocity 𝜔 = 1 rps. We stopped
the simulations once the solid-phase fraction and torque at the inner
cylinder reached the steady state. Assuming axisymmetric flow, we
performed one-dimensional simulations in a wedge geometry to eval-
uate the original formulation of the SBM with the frame-dependent
anisotropic stress tensor 𝐐. We also carried out 2D simulations using
our proposed model with the frame-invariant formulation. Figs. 3(a)
and 3(b) show the computational grids for 1D and 2D simulation
domains, respectively.

We also applied our proposed model to study the influence of
the rheometer geometry on evaluating the rheological properties of
suspensions in a manner akin to the experimental procedure. To do
so, we simulated the flow of suspension S1 on three different-sized
Couette cells with increasing rotations of the inner cylinder, ranging
from 1 to 32 rps, chosen to cover the typical range of applied shear rates
in Couette rheometer experiments with suspensions. We calculated
the torque values at the rotating cylinder from the simulated velocity
fields for all rotation speeds, using them to estimate the rheological
parameters 𝑚 and 𝑛 of the power-law fluid model, 𝝉 = 2𝑚 ̇𝛾𝑛−1𝐄. The
analytical solution of the equations for the Couette flow of a power-law
fluid relates the torque at the inner cylinder to its parameters by:
𝑇𝑧
𝐿
|

|

|

|𝑟=𝑅𝑖

= −2𝜋 𝑚
( 2𝜔

𝑛

)𝑛 (
𝑅−2∕𝑛
𝑜 − 𝑅−2∕𝑛

𝑖

)−𝑛
, (43)

where 𝑇𝑧 is the 𝑧−component of the torque and 𝐿 is the length of the
rheometer (in the 𝑧−direction). Since we assumed axial symmetry, only
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Fig. 1. Solution algorithm for the proposed SBM implemented in OpenFOAM.

Fig. 2. Schematic description of the configurations of the validation cases. Inlet velocity
for Poiseuille flows is represented by 𝑢, and 𝜔 is the rotation speed of Couette’s inner
cylinder.

one layer of cells in the axial direction exists in all employed meshes,
whose length is 𝐿 = 1 mm. We estimated parameters 𝑚 and 𝑛 using

Orthogonal Distance Regression (ODR) (Boggs et al., 1989), using the
grid uncertainty on the torque values to determine the margin of error
of the parameters at the 95% confidence level.

Table 4 describes all geometries and computational grids, where
geometry A corresponds to the same rheometer of the experimental
study of Phillips et al. (1992). Table 5 outlines the boundary conditions
for both 1D and 2D simulations. Two pressure–velocity iterations and
one non-orthogonal iteration in the correction loops sufficed for all
simulations.

4.2. Eccentric Couette flow

For the eccentric Couette flow simulations, we reproduced the
experimental setup of Subia et al. (1998) for the eccentricity ratio
𝜉 = 𝑒∕(𝑅𝑜 − 𝑅𝑖) = 0.5, being 𝑒 the distance between the centre of the
cylindrical surfaces that delimit the fluid domain. The outer cylindrical
surface with radius 𝑅𝑜 = 2.54 cm is stationary, and the inner cylinder of
radius 𝑅𝑖 = 0.64 cm rotates at 𝜔 = 1.5 rps. In this case, PMMA particles
are suspended in a Newtonian fluid of the same density and viscosity
of 𝜇𝑓 = 4.95 Pa⋅s, corresponding to suspension S6 in Table 3. Since
the experimental or numerical studies regarding this case (Phan-Thien
et al., 1995; Fang and Phan-Thien, 1995; Subia et al., 1998; Mirbod,
2016) did not report the density of the phases, we assumed 𝜌𝑝 = 1182
kg/m3 as in suspension S1, formed by PMMA particles of the same size.
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Fig. 3. Coarsest meshes used on the (a) 1D, (b) 2D simulations of Couette flows, and (c) on the simulations of eccentric Couette flows.

Table 4
Description of the Couette geometries and the respective meshes. 𝑛𝑟 and 𝑛𝜃 are the
number of divisions in the radial and angular directions, respectively, and the total
number of cells is given by 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑟𝑛𝜃 .

𝑅𝑖 𝑅𝑜
𝑙
𝑅𝑖

Simulation Geometry 𝑛𝑟 𝑛𝜃 𝑁𝑡𝑜𝑡𝑎𝑙

(cm) (cm) type & mesh ID

0.64 2.38 2.72 1D
AW1 28 1 28
AW2 40 1 40
AW3 56 1 56

0.64 2.38 2.72 2D
A1 28 128 3584
A2 40 180 7200
A3 56 256 14 336

1.28 3.02 1.36 2D
B1 28 128 3584
B2 40 180 7200
B3 56 256 14 336

1.28 4.76 2.72 2D
C1 40 180 7200
C2 56 256 14 336
C3 80 360 28 800

Table 5
Boundary conditions set in OpenFOAM for 1D and 2D simulations of Couette flow.

Patch 𝐮𝑠 𝑝∗ 𝜙

Inner cylinder 𝜔𝑅𝑖𝑒𝜃 zeroGradient zeroGradient
Outer cylinder noSlip zeroGradient zeroGradient
Top and bottoma wedge wedge wedge
Front and back empty empty empty

a Top and bottom patches only exist for the one-dimensional grids.

Mirbod (2016) reported that the flow achieves a steady state after
10,000 revolutions of the inner cylinder. However, we kept our sim-
ulations running until 15,000 revolutions to validate this information.
We simulated the flow using three structured grids with 3584, 7200,
and 14,336 grid cells. Fig. 3(c) shows the coarsest grid. The numerical
setup was the same as in the 2D concentric Couette flow simulations,
with the boundary conditions given in Table 5.

4.3. Planar Poiseuille flow

We reproduced the experimental setup of Lyon and Leal (1998),
consisting of particles of PMMA dispersed in a Newtonian oil (suspen-
sion S2). The suspension enters the channel of half-width 𝐻 = 0.9 mm
with uniform velocity 𝑢 = 0.002 m∕s and uniform solid-phase fraction.
We performed 1D (cyclic domain) and 2D simulations to verify the
correction applied to the phase fraction field in the former, as given
by Eq. (42). For the 2D simulations, we chose the length 𝐿 = 1000𝐻 to

ensure that they achieved the fully developed flow. We employed four
pressure–velocity iterations in the correction loop, and there were no
non-orthogonal corrections for all channel flow simulations since the
computational grids were perfectly orthogonal.

We simulated the flow of the same suspension considered for the
Couette rheometer case (suspension S1) in three channels of different
widths and with a mean inlet velocity of 𝑢 = 0.02 m∕s. We compared
the simulated values for the pressure drop to those calculated using the
analytical solution for the flow of a homogeneous power-law fluid:

𝑢 = 𝑛
2𝑛 + 1

[

1
𝑚

(

−
𝛥𝑝
𝛥𝐿

)]1∕𝑛
𝐻1+1∕𝑛, (44)

using the values of parameters 𝑚 and 𝑛 determined from the Couette
rheometer simulations.

Table 6 shows the description of all channel geometries, with ge-
ometries AL and A corresponding to the experimental study of Lyon
and Leal (1998), along with the respective computational grids. Table 7
outlines the boundary conditions for both 1D (cyclic domain) and 2D
simulations.

4.4. Poiseuille flow in circular cross-section pipes

Simulations in the circular cross-section pipe reproduced the condi-
tions of the experimental study of Oh et al. (2015), consisting of a sus-
pension of polystyrene spherical particles dispersed in poly-monobutyl
ether (PME), corresponding to suspensions S3 to S5 in Table 3. Since
these authors observed that the particles compacted at a maximum
concentration of 0.64, we have adopted this value as the maximum
packing fraction in our pipe flow simulations to make our suspension
model compatible with the experiments. The pure PME density is close
enough to the particle’s density for the suspension to be considered
neutrally buoyant, and we have used 𝜌 = 1050 kg/m3 for both phases.
We assumed that the suspension enters the pipe of radius 𝑅 = 3.15 mm
with uniform solid phase fraction and velocity, whose value of 𝑢 =
0.0005 m∕s yields a volumetric flow rate within the experimental range
reported by Oh et al. (2015).

Table 8 outlines all the employed meshes, with Fig. 4 showing the
coarsest mesh, and Table 9 gives the applied boundary conditions.
Since the non-orthogonality and skewness of these computational grids
were more critical than those for the previous cases, we employed six
pressure–velocity and two non-orthogonal iterations on the correction
loops. This case is the only one for which we adopted the linear scheme
as the default in discretising the gradients instead of using the least
squares method. As presented in Table 1, the method used to discretise
∇𝐮𝑠 remained unchanged.
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Table 6
Description of the two-dimensional channel geometries and the respective meshes. 𝑛𝑥 and 𝑛𝑦 are the number of divisions in
the axial and transversal directions, respectively, with the total number of cells given by 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑥𝑛𝑦.

𝐻 𝐿 Suspension Simulation Geometry 𝑛𝑥 𝑛𝑦 𝑁𝑡𝑜𝑡𝑎𝑙
(mm) ID typea & mesh ID

0.9 1000𝐻 S2 2D
AL1 1000 50 50 000
AL2 1400 70 98 000
AL3 2000 100 200 000

0.9 𝐻∕2 S2 1D
A1 1 50 50
A2 1 70 70
A3 1 100 100

4 𝐻∕2 S1 1D
B1 1 100 100
B2 1 140 140
B3 1 200 200

8 𝐻∕2 S1 1D
C1 1 200 200
C2 1 280 280
C3 1 400 400

12 𝐻∕2 S1 1D
D1 1 300 300
D2 1 424 424
D3 1 600 600

a 1D = cyclic domain.

Table 7
Boundary conditions set in OpenFOAM for 1D (cyclic domain) and 2D simulations of
two-dimensional channel flow.

Patch 𝐮𝑠 𝑝∗ 𝜙

1D Simulations

Inlet and outleta cyclic cyclic cyclic
Walls noSlip zeroGradient zeroGradient
Front and Back empty empty empty

2D Simulations

Inlet 𝑢𝐞̂𝑥 zeroGradient 𝜙𝐼 𝑁
Outlet zeroGradient 0 zeroGradient
Walls noSlip zeroGradient zeroGradient
Front and Backb empty empty empty

a These patches are planes normal to the 𝑥 direction.
b These patches are planes normal to the 𝑧 direction.

Table 8
Description of the cases for the circular cross-section pipe flow simulations.

Case ID Suspension Simulation 𝑁𝑡𝑜𝑡𝑎𝑙
ID type

A1 S3 2D 2220
A2 S3 2D 4452
A3 S3 2D 6300
A4 S4 2D 6300
A5 S5 2D 6300

Table 9
Boundary conditions set in OpenFOAM for the circular cross-section pipe flow simula-
tions.

Boundary 𝐮𝑠 𝑝∗ 𝜙

Inlet and outleta Cyclic Cyclic Cyclic
Walls No slip Zero gradient Zero gradient

a These patches are planes normal to the 𝑧 direction.

4.5. Estimating the dimensionless parameters

To validate the hypotheses given by Eqs. (1), (2) and (3) for the
application of the SBM to our simulated cases, we estimated the Stokes,
particles’ Reynolds and Péclet numbers from their geometric and flow
conditions. We estimated the shear rates for each geometry by the
following relations:

𝛾̇𝑃 𝑃 = 3𝑢
2𝐻

, 𝛾̇𝐶 𝑃 = 2𝑢
𝑅

, 𝛾̇𝐶 𝐶 =
𝜔𝑅𝑖

𝑅𝑜 − 𝑅𝑖
, 𝛾̇𝐸 𝐶 =

𝜔𝑅𝑖

𝑅𝑜 −
(

𝑅𝑖 + 𝑒
) (45)

Fig. 4. Coarsest mesh used on the simulations of pipe flow.

where the subscripts 𝑃 𝑃 , 𝐶 𝑃 , 𝐶 𝐶, and 𝐸 𝐶 correspond to the Poiseuille
flow in a two-dimensional channel and a circular tube and the concen-
tric Couette and eccentric Couette flows, respectively.

To also evaluate the Stokes flow hypothesis, we estimated the
Reynolds number for the suspension flow in each configuration using
the suspension viscosity (Eq. (15) with 𝜙 = 𝜙𝐼 𝑁 ). We applied the
following relations:

𝑅𝑒𝑃 𝑃 =
3𝑢𝐻 𝜌𝑓
2𝜇𝑠

, 𝑅𝑒𝐶 𝐶 =
𝜔𝑅𝑖𝜌𝑓

(

𝑅𝑜 − 𝑅𝑖
)

𝜇𝑠
,

𝑅𝑒𝐶 𝑃 =
2𝑢𝑅𝜌𝑓
𝜇𝑠

, 𝑅𝑒𝐸 𝐶 =
𝜔𝑅𝑖𝜌𝑓

(

𝑅𝑜 − 𝑅𝑖 + 𝑒
)

𝜇𝑠

(46)

Table 10 shows the ranges of the 𝑆 𝑡, 𝑅𝑒𝑝, 𝑃 𝑒 and 𝑅𝑒 determined
for all studied cases, except for the concentric Couette flow simulations
with 𝜔 above 2 rps presented in Section 5.5, which discusses them.

The estimates of 𝑃 𝑒, 𝑅𝑒𝑝, 𝑃 𝑒, and 𝑅𝑒 shown in Table 10 support the
neglect of Brownian motion effects, the assumption of rapid particles’
velocity relaxation, inertialess formulation for the particles’ drag force,
and the suspension flow in the Stokes regime.

5. Results and discussion

To assess each of the proposed modifications to the SBM, including
the improvement in the momentum interpolation method, Table 11
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Table 10
Estimated ranges for the dimensionless Stokes, particle’s Reynolds, Péclet and Reynolds
numbers, determined using Eqs. (1), (2), (3) and (46) with the shear rates estimated
by Eq. (45).

𝑆 𝑡 𝑅𝑒𝑝 𝑃 𝑒 𝑅𝑒

Minimum 4.84 × 10−8 4.54 × 10−7 1.80 × 109 9.20 × 10−5
Maximum 1.13 × 10−5 1.07 × 10−4 1.25 × 1013 3.51 × 10−2

Table 11
Identification of the different SBM solvers used in our simulations according to the
selected models for the unit vectors 𝐞̂𝑖, 𝐒𝑛𝑝 and momentum interpolation.

Solver ID 𝐞̂1 , 𝐞̂2 , 𝐞̂3 𝐒𝑛𝑝 Momentum interpolation

I Constant Eq. (11) Rhie and Chow (1983)
II Eq. (36) Eq. (18) Section 3.1
III Eq. (36) Eq. (16) Section 3.1
IV Eq. (36) Eq. (11) Section 3.1
V Eq. (35) Eq. (18) Section 3.1
VI Eq. (35) Eq. (18) Rhie and Chow (1983)
VII Eq. (24) Eq. (18) Section 3.1

lists the different combinations of the formulations for the anisotropic
tensor 𝐐, particles’ normal stress 𝐒𝑛𝑝, and momentum interpolation
method. Solver V corresponds to the final proposed model for 2D and
3D simulations, with our modified calculation of the anisotropic tensor,
our local formulation of the extra stress and the improved momentum
interpolation. Solver II is Solver V applied to two-dimensional planar
Poiseuille flow. In addition to the SBM solvers outlined in Table 11,
we also perform simulations using a two-fluid model solver (Municchi
et al., 2019a), corresponding to the model described in the work
of Municchi et al. (2019b), identified as ‘‘TFM solver’’.

All results presented from now on are identified by the Solver ID
and by the geometry and mesh ID. We assured grid convergence for
all considered cases, using Solver II for channel flow simulations and
Solver V for the Couette and pipe flow simulations. Appendix A presents
the results for the uncertainties in the intermediate and fine meshes and
the observed order of accuracy. The only exception is for simulations
using Solver IV, which did not converge. We discussed this behaviour
when analysing the extra stress formulations in Section 5.3.2.

5.1. Verification of the cyclic domain formulation

Municchi et al. (2019b) presented results for the 1D and 2D simula-
tions of the same planar Poiseuille suspension flow using the two-fluid
model, which do not coincide, exhibiting a clear difference in mass
conservation. This discrepancy was probably due to the direct usage of
OpenFOAM’s periodic boundary condition (cyclic) in the 1D simulation
of the fully developed flow without keeping constant the mass flow rate
average of the dispersed-phase fraction. As shown below, we solved
this issue by correcting the phase fraction field according to Eq. (42) at
every time step.

Fig. 5 shows the results of simulations performed using the 1D
simplification (cyclic domain) of the two-dimensional straight channel
using the cyclic boundary condition together with the correction given
by Eq. (42) (A3), and using the 2D long channel simulations (AL3),
both performed with Solver II. We normalised the dispersed-phase
fraction profiles by 𝜙𝑚 and the axial velocity profiles by the theoretical
maximum velocity of a pure Newtonian fluid (𝑉𝑚𝑎𝑥). The maximum
difference between the phase fraction and velocity results are 0.09%
and 0.25%, respectively, within the estimated grid uncertainties. Thus,
we considered the results to be equivalent. Fig. 5 shows the results
for the finer grids, but the simulations on the intermediate and coarse
meshes showed the same behaviour.

The main advantage of using the cyclic domain approach is reducing
the computational effort needed to simulate a fully developed duct
flow. We compared the execution time of both simulation types for the
pairs of equivalent grids, A1/AL1, A2/AL2, and A3/AL3, which have

Table 12
Comparison of the computational costs for the 1D and 2D channel flow simulations
using Solver II.

Simulation ID Used processors Execution time Execution time ratioa

A1 1 2.9 min 146.8AL1 6 7.1 h
A2 1 6.2 min 361.9AL2 16 37.4 h
A3 1 14.1 min 518.3AL3 24 121.8 h

a (Long channel execution time)/(Cyclic channel execution time).

the same number of divisions in the transversal direction. We ran the
1D and 2D simulations on each pair of equivalent grids on the same
computer using dedicated processors of a cluster node. The execution
time reported by OpenFOAM is the CPU time of the master process in
the MPI processor pool. Therefore, it represents the turnaround time
to get the simulation results. Table 12 compares the execution times
for the 1D and 2D simulations, giving their ratio. As the number of
grid cells dramatically increases with the mesh refinement, so does the
number of processors used in the 2D simulation to make its execution
time feasible. We did not engage in a detailed parallelisation study to
determine the ideal number of processors for each simulation. How-
ever, the ratios of execution times show the clear advantage of using the
periodic boundary conditions in the simplified geometry to simulate the
fully developed flows at the steady state. Using cyclic domains allowed
us to extensively simulate channel and pipe flows using the solvers
listed in Table 11 for several conditions. Unless stated otherwise, the
following 2D channel and pipe flow results were obtained using cyclic
domains.

5.2. Evaluation of the improved momentum interpolation method

To implement the frame-invariant formulation of the anisotropic
stress tensor, we started our development from Solver I, corresponding
to the work of Dbouk et al. (2013a). Since it is a frame-dependent
solver, it performs simulations with the anisotropic tensor 𝐐 formu-
lation given by Eq. (12) with constant unit vectors coinciding with
OpenFOAM’s reference coordinate system, which is the Cartesian frame
of reference. Thus, Couette flow simulations employed the 1D simpli-
fied domain presented in Fig. 3(a) using OpenFOAM’s wedge boundary
conditions to impose symmetry in the 𝜃−direction. Because it is a
perfectly orthogonal grid, the unit vectors describing the Couette flow
in cylindrical coordinates, which are 𝐞̂1 = 𝐞̂𝜃 , 𝐞̂2 = 𝐞̂𝑟 and 𝐞̂3 = 𝐞̂𝑧, can
be represented by the Cartesian unit vectors, namely 𝐞̂1 = 𝐞̂𝑦, 𝐞̂2 = 𝐞̂𝑥
and 𝐞̂3 = 𝐞̂𝑧.

Fig. 6(a) compares the results obtained with Solvers I, V and VI
for the particles’ phase fraction and velocity profiles for the steady-
state Couette flow. This figure shows that Solver VI gave the particles’
phase fraction field with numerical oscillations, especially near the
outer cylinder. On the other hand, Solver V yielded results without os-
cillations that were equivalent to those generated by Solver I. Although
Solvers V and VI employ our formulation of the anisotropic stress
tensor, the latter uses the standard momentum interpolation method,
whereas the former applies the improved momentum interpolation
method. This result not only supports the correctness of our implemen-
tation of the 𝐐 calculation using Eq. (35), but also the adequacy of the
proposed particles’ stress tensor model (Eqs. (18) and (19)) for Couette
flows.

For Solver V results, we also verified that 𝜆3 stayed constant and
equal to 0.5 throughout the domain and that 𝐞̂3 was always calculated
using the curl of the velocity field, which we expected as there is no
plateau region in the Couette flow.
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Fig. 5. Comparison of the steady-state fully developed flow profiles for the (a) solid-phase fraction and (b) dimensionless axial velocity obtained for the one-dimensional (using
the cyclic domain) and two-dimensional simulations of the planar Poiseuille 2D channel flow of suspension S2 using Solver II.

Fig. 6. Comparison of the steady-state (a) dispersed-phase fraction and (b) dimensionless angular velocity profiles obtained with different formulations of the SBM for Couette
flow.

5.3. Evaluation of the new stress tensor model

5.3.1. New anisotropic stress tensor formulation
To illustrate the expected components of 𝐐 using its conceptual

definition given by Eq. (12) and the directions of 𝐞̂𝑖, 𝑖 = 1, 2, 3 described
after it, consider the steady-state and fully developed suspension flow in
a cylindrical pipe with a circular cross-section, for which the directions
of the velocity, its gradient, and vorticity in cylindrical coordinates
are 𝐞̂𝑧, 𝐞̂𝑟, and 𝐞̂𝜃 , respectively. By transforming a coordinate system
from cylindrical to Cartesian coordinates, we calculated the non-zero
components of 𝐐 shown in Fig. 7. Appendix B gives details of this
coordinate transformation.

Fig. 8 demonstrates the motivation behind calculating the
anisotropic stress tensor by Eq. (35). It shows the five non-zero com-
ponents of 𝐐 obtained for pipe flow simulation A3 using the local
coordinate system defined by Eq. (24) (Solver VII). Comparing the
expected values of the 𝐐 components given in Fig. 7 to those shown
in Fig. 8, we observe strong non-physical deviations from the expected
values of the 𝐐 components in the central region of the duct, which are
oscillatory in both space and time. These perturbations arise due to the
intrinsic inaccuracy in determining 𝐞̂3 using Eq. (24) in regions where
‖

‖

∇ × 𝐮𝑠‖‖ is close to zero. Since the direction of 𝐞̂3 varies at every time
step, and so do the components of 𝐐, the simulation never reaches a
steady-state solution.

Fig. 9 shows the same 𝐐 components obtained using Solver V
with our proposed formulation of the anisotropic stress tensor. All
components that depend on 𝜆2 and 𝜆3 (Figs. 9(a)–9(c)) feature two
distinct regions separated by a smooth yet thin transition layer. In the

central region, 𝜆2 = 𝜆3. In the outer region, they follow the expected
pattern presented in Fig. 7. The simulations converged to a steady-state
result with constant components of 𝐐. Still, there are perturbations at
𝜃 = ±𝑛𝜋∕4 (𝑛 = 1, 3) due to the higher mesh non-orthogonality and
skewness at this transition region from a fully orthogonal grid in the
central block of the O-grid mesh to the mesh blocks adjacent to the
duct wall (see Fig. 4). For this reason, We always evaluated line plots
for pipe flows at 𝜃 = 𝜋∕2.

Fig. 10 shows the 𝜆3 and 𝜅 profiles obtained from pipe flow simu-
lation A3 using Solver V and the calculated value of 𝜅0 = 0.116. The
transition region of 𝜆3 from 0.8 to 0.5 takes about 10% of the radial
coordinate interval, with the intersection between 𝜅 and 𝜅0 accurately
marking its midpoint.

5.3.2. Extra stress contribution
Fig. 11 displays the results for evaluating the different models

for the extra stress in terms of the dispersed-phase fraction profiles
obtained for the two-dimensional straight channel flow simulations.

In this figure, the solid lines represent the simulation results us-
ing Solver IV without adding an extra stress term to the particles’
normal stress tensor. Even though this case corresponds to the one
with a diverging derivative 𝑑 𝜙∕𝑑 𝑦 at the channel’s central plane, the
simulations did converge because the numerical error led to a non-
zero shear rate at the central plane, preventing the simulations from
diverging. However, the solutions of the linear systems composed of the
discretised equations did not fully converge for the stipulated tolerance
criteria. The zoomed area of Fig. 11 shows that the particles’ phase
fraction profiles obtained using Solver IV still change significantly with
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Fig. 7. Components of the anisotropic tensor 𝐐 for cylindrical pipe flow obtained theoretically from Eq. (12), using constant 𝐞̂1 , 𝐞̂2 and 𝐞̂3: (a) 𝑄𝑥𝑥, (b) 𝑄𝑥𝑦 = 𝑄𝑦𝑥, (c) 𝑄𝑦𝑦 and (d)
𝑄𝑧𝑧.

Fig. 8. Simulated components of 𝐐 at 𝑡 = 1000 s for the pipe flow simulation A3 using Solver VII, with 𝐞̂1 , 𝐞̂2 and 𝐞̂3 calculated from Eq. (24): (a) 𝑄𝑥𝑥, (b) 𝑄𝑥𝑦 = 𝑄𝑦𝑥, (c) 𝑄𝑦𝑦 and
(d) 𝑄𝑧𝑧.
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Fig. 9. Simulated components of the anisotropic tensor 𝐐 at the steady state for the pipe flow simulation A3 using Solver V, with 𝐞̂1 , 𝐞̂2 and 𝐞̂3 calculated using Eq. (35) and 𝜆3
from Eq. (37): (a) 𝑄𝑥𝑥, (b) 𝑄𝑥𝑦 = 𝑄𝑦𝑥, (c) 𝑄𝑦𝑦 and (d) 𝑄𝑧𝑧.

Fig. 10. Steady-state radial profiles for the parameter 𝜆3, calculated using Eq. (37),
and for the 𝜅, used in the transition criterion, obtained from pipe flow simulation A3
using Solver V.

grid refining, indicating poor grid convergence. Simulations performed
in an even finer grid (𝑛𝑦 = 200) diverged because the calculated values
for the shear rate and particles’ phase fraction were too close to zero
and to 𝜙𝑚, respectively.

The dashed lines in Fig. 11 represent the results obtained using
Solver II, with our proposed formulation of the extra stress, using
𝑘 = 10−3 in Eq. (19). This value of 𝑘 always yielded satisfactory results
for our planar Poiseuille and Couette flows simulations. In contrast

to the simulations using Solver IV, the solution of the linear systems
converged, and there was grid convergence. Simulations of this flow in
even finer grids (𝑛𝑦 = 200, 400) also converged and yielded the same
phase-fraction field obtained for grid A3.

The extra stress term acts against the migration of particles towards
the centre line, playing the role of a repulsive force that prevents
the suspension from jamming. The extra stress reaches its maximum
value at the centre and its minimum value at the channel walls. For
comparison, Fig. 11 also shows the results obtained using Solver III
at the finest grid (A3), which uses the constant non-local correction
of Miller and Morris (2006).

5.4. Validation of the proposed model

Using the final implementations for 1D (Solver II) and 2D (Solver V)
simulations, we validate our model against experimental and literature
data.

Fig. 12 presents the results for the dispersed-phase fraction and
dimensionless velocity profiles for the fully developed flow in the two-
dimensional straight channel. We show in Fig. 12(a) the results of the
TFM-1D and TFM-2D simulations, obtained by Municchi et al. (2019b),
which are significantly different due to the lack of the correction of the
solid phase fraction field when using the periodic boundary conditions.
The results of the 1D simulation using the original SBM, reproduced
from Dbouk et al. (2013a) (SBM-1D), are almost identical to those
obtained in the 2D simulation of Municchi et al. (2019b), reinforcing
the idea that the simplification of the system as one effective fluid
is capable of accurately representing the mixture flow. Our results
using Solver II slightly differ from those, especially at the centre of
the channel. However, differences among these results are within the
experimental error range. Unfortunately, the referred studies do not
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Fig. 11. Grid convergence of the dispersed-phase fraction profiles using different formulations for the extra stress term (Solvers II, III and IV using suspension S2).

Fig. 12. Comparison of the steady-state fully developed flow of suspension S2 in a 2D channel considering the profiles of the (a) dispersed-phase fraction and (b) dimensionless
velocity profiles obtained using Solver II, the experimental data from Lyon and Leal (1998), the TFM results from Municchi et al. (2019b), and the SBM results from Dbouk et al.
(2013a).

Fig. 13. Comparison of the steady-state dispersed-phase fraction profile obtained for
Couette flow using suspension S1 and Solver V with the experimental data from Phillips
et al. (1992) and literature data. TFM - 1D results were extracted from Municchi et al.
(2019b), SBM - 1D results from Dbouk et al. (2013a), and TFM - 2D results from Inkson
et al. (2017).

provide the respective velocity profiles.
As for Couette flow simulations, the particles’ phase fraction profiles

presented in Fig. 13 show that our final model (Solver V) provides
the same results as the original SBM (Dbouk et al., 2013a) (SBM-1D)
and the TFM (Municchi et al., 2019b) (TFM-1D) simulations, both
obtained using the 1D simplification of the Couette geometry with
constant anisotropic tensor formulation. Particularly, for the Couette
flow under analysis, there is no region in the flow domain with 𝜅 < 𝜏.
Therefore, the calculation of the unit vectors 𝐞̂𝑖 by Eq. (35) is equivalent
to using Eq. (24) with constant 𝜆3. This observation confirms the correct
implementation of our proposed model and its ability to represent
generic 2D flows for which no correction in the calculation of 𝐞̂3 and
𝜆3 is needed due to the absence of regions of constant or near-constant
velocity.

Solver V results for the dispersed-phase fraction are essentially equal
to those of SBM-1D and TFM-1D simulations. This observation and the
analysis presented in Section 5.3.2 reinforce the conclusion that one
can apply the proposed extra stress contribution to any flow geometry.
This extra stress is part of the particles’ stress model, and the magnitude
of its effects depends on the flow characteristics. For the Couette flow
considered here, even though this contribution is present, it does not
significantly alter the steady-state results of the simulation.
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Fig. 14. Streamlines for the eccentric Couette flow (with 𝜉 = 0.5) at the steady state
obtained using Solver V.

Fig. 13 also shows the results obtained by Inkson et al. (2017)
(TFM-2D, Q=I), who used a two-fluid model to simulate the flow in a
2D Couette geometry. However, they neglected the anisotropy of the
normal stresses and replaced 𝐐 with the constant identity tensor 𝐈.
Consequently, they obtain a different concentration profile. We showed
in the Supplementary Material that the particles’ phase fraction profile
depends on the values of 𝜆1 and 𝜆2 by analysing the resulting equation
for the migration flux for Couette flows. Inkson et al. (2017) observed
a slight dependence of the steady-state concentration profiles with the
rotation speed of the inner cylinder, which is in disagreement with
experimental observations and with the expected SBM behaviour since
dimensional analysis can show that the particles’ phase fraction profile
is independent of the applied shear rate (Fernandes, 2003). Besides,
in their simulations using 𝜙𝑚 = 0.68, these authors observed that the
particles moved away from the outer cylinder wall, preventing the con-
centration profile from achieving values above 0.60. They arbitrarily
increased the value of 𝜙𝑚 for suspension S1 from 0.68 to 0.72 to allow
the concentration profile to reach higher 𝜙 values, obtaining the results
presented in Fig. 13. These results also show numerical oscillations near
the outer wall. We did not observe such problems in any of our 2D
simulations.

To further demonstrate the ability of our model (Solver V) to sim-
ulate suspension flow in more complicated geometries, we simulated
the eccentric Couette flow for an eccentricity ratio of 𝜉 = 0.5. We
compared the velocity and concentration fields after 10,000 and 15,000
revolutions of the inner cylinder and observed essentially the same
results. Hence, we report steady-state results at 10,000 revolutions of
the inner cylinder.

For 𝜉 = 0.5, a slow recirculating flow region arises in the wider
portion of the gap, as shown in Fig. 14, in agreement with the exper-
imentally observed behaviour (Phan-Thien et al., 1995; Subia et al.,
1998).

Fig. 15 compares our results for the dispersed-phase fraction profile
over a horizontal line passing through the centre of both cylindrical
surfaces with the DFM simulations and experimental data of Subia et al.
(1998) and the SBM simulations of Mirbod (2016). In our simulations,
there is an abrupt increase in the dispersed phase fraction at the surface
of the inner cylinder on the narrow side of the gap. To interpret this
behaviour, we present the divergence of the migration flux 𝐉 at this
region in Fig. 16. Recalling Eq. (4) for the dispersed-phase fraction, we
see that negative values of ∇ ⋅ 𝐉 represent a source term and positive
values of ∇⋅𝐉 represent a sink term. In the narrower gap, ∇⋅𝐉 close to the
inner cylinder is positive when the flow approaches the smallest cross-
flow area and eventually becomes negative. This region with negative

Fig. 15. Comparison of the dispersed-phase fraction profile obtained using Solver
V with the SBM simulation results of Mirbod (2016) (steady-state results at 10,000
revolutions), the DFM simulation results of Subia et al. (1998) (after 6000 revolutions)
and the experimental data of Subia et al. (1998) (after 10,000 revolutions).

Fig. 16. Divergence field of the migration flux 𝐉 for the eccentric Couette flow (with
𝜉 = 0.5) at steady state obtained using Solver V.

values of ∇⋅𝐉 is responsible for the local increase on the dispersed-phase
fraction observed in Solver V simulation.

Overall, there is a good qualitative agreement among the dispersed-
phase fraction profiles shown in Fig. 15. In the three simulations, the
point of maximum particle concentration is displaced from the outer
cylinder wall towards the recirculating flow region, and quantitative
differences may be due to the different modelling strategies. There is
an apparent difference in the dynamics of the migration process using
the different models. The DFM results reported by Subia et al. (1998)
seem to reach the steady state after 6000 revolutions of the inner
cylinder, in contrast to both simulations using the SBM that achieved
the steady-state results at 10,000 revolutions of the inner cylinder.

The SBM formulation of Mirbod (2016) considered no extra stress in
the stress model. Even though this author mentioned using the values of
𝜆𝑖 proposed by Morris and Boulay (1999), she did not specify how she
determined the directions of the unit vectors 𝐞̂𝑖. While the anisotropic
tensor 𝐐 main directions are constant for concentric Couette flows
using the cylindrical coordinate system (𝐐 = 𝜆1𝐞̂𝜃 𝐞̂𝜃 + 𝜆2𝐞̂𝑟𝐞̂𝑟 + 𝜆3𝐞̂𝑧𝐞̂𝑧),
this is not the case for eccentric Couette flows because the velocity does
not align with a coordinate versor. Hence, a formulation which takes
into account the variations in the velocity direction is necessary, such
as our proposed model. Fig. 17 presents the non-null components of
the anisotropic tensor 𝐐 obtained in our simulation. Some additional
results for the eccentric Couette flow simulations are presented in the
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Fig. 17. Components of the anisotropic tensor 𝐐 for the eccentric Couette flow (with 𝜉 = 0.5) at the steady state (10,000 revolutions) obtained using Solver V: (a) 𝑄𝑥𝑥, (b) 𝑄𝑥𝑦,
(c) 𝑄𝑦𝑥 and (d) 𝑄𝑦𝑦.

Supplementary Material.
For pipe flow simulations, we reevaluated the value of the parame-

ter 𝑘 in Eq. (19) and found the optimum value to be 𝑘 = 2.0 × 10−5.
For 𝑘 lower than 2.0 × 10−5, the extra shear rate 𝛾̇𝑒 is too small to
prevent the simulation from diverging. Figs. 18(a) and 18(b) show the
dispersed-phase fraction and dimensionless velocity profiles obtained
from simulation of case A3 (suspension S3, 𝜙𝐼 𝑁 = 0.55), with the
velocity profiles normalised by the inlet velocity of the suspension,
𝑢. Even though we have plotted the results obtained using the TFM
solver, this simulation does not fully converge to a steady-state solution
because it employs Eq. (24) for the calculation of the unit vectors
𝐞̂𝑖, and the resulting components of tensor 𝐐 exhibit an oscillatory
and non-physical behaviour similar to that previously shown in Fig. 8.
These oscillations in the tensor 𝐐 components resulted in an oscillation
around 1% for the phase-fraction profile at every 10 seconds.

Fig. 18 also shows that the results obtained using Solver V suc-
cessfully capture the qualitative behaviour of the experimental data,
featuring a jammed region with constant dispersed-phase fraction and
velocity at the centre of the pipe. Our model, however, underpredicts
the extent of both regions. Oh et al. (2015) also observed an underpre-
diction on the size of this central plug-flow-like region when comparing
their experimental data to the predictions using a frictional rheology
model. The experimental data suggest a stronger migration than both
models’ predictions, with a smaller concentration at the pipe walls and
a larger jammed region. Consequently, the experimental velocity profile
is more blunted than our model predicts.

Fig. 19 shows similar results for simulations of cases A4 and A5,
corresponding to suspensions S4 and S5, respectively. For the flows
of these more dilute suspensions, which do not achieve the maximum
value of the dispersed-phase fraction, agreement with the experimental
data increases significantly, with the predicted and experimental ve-
locity profiles matching almost perfectly for suspension S5. For both

simulations, there is still a region at the centre of the pipe with 𝜅 < 𝜏
in which the solver modifies the calculation of tensor 𝐐. As the bulk
concentration of the suspension decreases, so does the size of this
region. Simulations of cases A4 and A5 using the TFM solver diverged.

Attempting to apply our proposed model to more complicated flows,
we simulated suspension flow in a pipe with an abrupt expansion
(1:4 expansion ratio) using Solver V. Such flows feature high-velocity
gradients at the expansion due to the sudden change in the cross-
sectional area and a recirculation region where the flow transitions
from simple shear to extensional flow. Our model could not reproduce
experimental (Moraczewski et al., 2005) or simulation results obtained
using a more sophisticated stress model (Badia et al., 2022) for the
length of the recirculation zone. Therefore, the application of our model
should be limited to shear-dominated flows, such as those we presented
above. Details of the studied flow with an abrupt expansion and the
obtained results are given in the Supplementary Material.

5.5. Estimation of rheological parameters

This section focuses on the consequences of describing the suspen-
sion rheology as a pseudo-homogeneous non-Newtonian fluid. To do so,
we used the results from our flow simulations in three different Couette
viscometers (numerical experiments) to adjust a rheological model to
the simulated shear stress. Then, we tested the adjusted rheological
model to predict the behaviour of the same suspension in a planar
Poiseuille flow.

We performed Couette flow simulations of suspension S1 in ge-
ometries A3, B3 and C3 using our final model (Solver V) for inner
cylinder rotations starting from 𝜔 = 1 rps and duplicating the angular
velocity until the low Reynolds assumption was no longer valid. For
𝜔 = 32 rps, despite observing maximum values of 𝑅𝑒𝑝 = 2.11 × 10−3
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Fig. 18. Comparison of the steady-state fully developed profiles of the (a) dispersed phase-fraction and (b) velocity profiles obtained in our cylindrical pipe simulations (case A3,
𝜙𝐼 𝑁 = 0.55) using Solvers V and the TFM Solver, and the experimental data of Oh et al. (2015).

Fig. 19. Comparison of steady-state fully developed profiles for the dispersed phase-fraction (left) and dimensionless velocity profiles (right) obtained in our pipe flow simulations
of cases A4 (𝜙𝐼 𝑁 = 0.35) (a and b) and A5 (𝜙𝐼 𝑁 = 0.20) (c and d) using Solver V, together with the experimental data of Oh et al. (2015).

and 𝑆 𝑡 = 2.24 × 10−4 for all geometries, the suspension flow Reynolds
number reached 𝑅𝑒 = 1.12 in geometry C3. Hence, we did not increase
𝜔 any further.

For each studied geometry, steady-state results for the dispersed-
phase fraction and velocity fields were independent of the inner cylin-
der’s rotation speed, suggesting a Newtonian response to the sheared
suspension. Fig. 20 shows the steady-state results obtained for the
different rheometer sizes, showing that simulations using geometries A
and C led to equivalent results, which are, in turn, different from those
obtained for geometry B. This observation shows that the ratio 𝑙∕𝑅𝑖
dictates the similarity of the segregation profiles between two distinct
rheometers, which is the same for geometries A and C (see Table 4).

Table 13 presents the resulting values for the estimated power-law
parameters from Eq. (43). The power coefficient 𝑛 is close to 1 for
all considered geometries, suggesting a Newtonian behaviour of the

suspension. The estimated apparent viscosities are significantly greater
than the viscosity of the continuous phase, 𝜇𝑓 = 9.45 Pa⋅s, and do
not match the values calculated assuming a pseudo-homogeneous fluid
with concentration 𝜙𝐼 𝑁 and shear viscosity given by Eq. (15), which
yields 𝜇𝑠

(

𝜙 = 𝜙𝐼 𝑁
)

= 94.3 Pa⋅s. These results show that different appar-
ent viscosities are obtained for the same suspension flowing in different
geometries when assuming a pseudo-homogeneous rheological model
to interpret rheometric experiments.

We also performed simulations of the flow of suspension S1 in the
2D straight channels B3, C3 and D3 using Solver II. The minimum
and maximum concentration values, observed at the channel wall and
centre line, respectively, were 0.422 and 0.659 for geometry B, 0.426
and 0.652 for geometry C, and 0.430 and 0.646 for geometry D. Since
the difference in the channels’ widths is smaller than the difference
between the Couette gap sizes (millimetres versus centimetres), the
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Fig. 20. Steady-state profiles for the (a) dispersed-phase fraction and (b) dimensionless angular velocity obtained for the flow of suspension S1 in different Couette geometries
using Solver V.

Table 13
Estimates for the parameters of the power-law model using the simulated results from
the Couette flows for suspension S1 in different geometries.

Variable Geometry

A3 B3 C3

𝑚 (Pa⋅s) 33.8 ± (

4.1 × 10−4) 54.6 ± (

1.1 × 10−3) 34.4 ± (

6.5 × 10−3)
𝑛 1.0 ± (

2.6 × 10−6) 1.0 ± (

3.7 × 10−6) 1.0 ± (

3.8 × 10−6)

Table 14
Comparison of the simulated pressure drop values for different 2D channel simulations
with the calculated values using the estimated power law model parameters in Eq. (44).
𝑚 (Pa⋅s)a Geometry

B3 C3 D3

Simulated values
− −𝛥𝑝∕𝛥𝐿 (kPa/m) 181.14 46.28 20.93

Calculated Values

33.79 −𝛥𝑝∕𝛥𝐿 (kPa/m) 12.67 3.17 1.41
𝑅𝑎𝑡𝑖𝑜b 14.30 14.60 14.84

54.64 −𝛥𝑝∕𝛥𝐿 (kPa/m) 20.49 5.12 2.28
𝑅𝑎𝑡𝑖𝑜b 8.84 9.04 8.90

34.45 −𝛥𝑝∕𝛥𝐿 (kPa/m) 12.92 3.23 1.44
𝑅𝑎𝑡𝑖𝑜b 14.02 14.33 14.53

a Value of parameter 𝑛 is equal to 1 in all calculations.
b 𝑅𝑎𝑡𝑖𝑜 = (𝛥𝑝∕𝛥𝐿)𝑠𝑖𝑚 ∕ (𝛥𝑝∕𝛥𝐿)𝑐 𝑎𝑙 𝑐 .

difference in the segregation profiles was less significant.
Table 14 shows the simulated pressure drops for the channel flows

in geometries B3, C3 and D3, along with the values calculated by
Eq. (44) considering the power-law model and using the estimated
parameters presented in Table 13. The ratio between the simulated
and calculated values ranges from 8.84 to 14.84, reinforcing that the
power-law model cannot predict the behaviour of the suspension. It
becomes clear that the interpretation of suspension rheological data
is not straightforward. Therefore, one must interpret experimental
rheometric data using a more sophisticated model rather than simple
non-Newtonian models.

6. Concluding remarks

We considerably improved the formulation and implementation of
the suspension balance model compared to those of previous works,
leading to a frame-independent SBM solver that is stable and robust.

We implemented a solid mass flow rate correction necessary for
simulating suspension flows in cyclic domains using the OpenFOAM’s
periodic boundary condition. This correction was verified, making it
possible to obtain results for the steady-state fully developed duct

flow in a reasonable execution time. We also presented an improved
momentum interpolation method that was applied to a mixture model
for the first time to the best of our knowledge, ensuring the robustness
of the numerical code. It allowed us to simulate 2D Couette flows with
a frame-invariant anisotropic stress tensor without resorting to the 1D
simplification, which is an essential step towards the ability to simulate
generic flows for which the directions of the flow, its gradient and
vorticity change concerning the domain coordinate system.

Our proposed particles’ stress model includes a new local formu-
lation of the extra stress associated with the action of the lubrication
forces at the particle-size scale. Our extra stress model effectively
prevents the simulation from diverging when there is a zero or near-
zero shear rate region in the flow, exhibiting good grid convergence.
It is an algebraic and geometry-independent extra stress model, in
contrast to the currently available formulations which may involve
solving additional transport equations (Nott and Brady, 1994) or which
are geometry-dependent (Miller and Morris, 2006).

Our model also includes a physically based non-uniform formulation
of the anisotropic stress tensor 𝐐 that addresses, for the first time, the
lack of definition of its main directions in regions of constant or near-
constant velocity. This new formulation of 𝐐 allowed us to accurately
simulate circular cross-section pipe flows. We were also able to simulate
eccentric Couette flows, for which a formulation taking into account
changes in the directions of the velocity and its gradient is necessary.

Using the simulation results for Couette rheometers of different
geometries, we performed the rheological characterisation of the sus-
pension similarly to the experimental procedure, always obtaining
Newtonian behaviour for the same suspension but with an apparent
viscosity that depends on the rheometer geometry. Flow simulations in
two-dimensional straight channels showed that, when using the param-
eters estimated from the Couette rheometer simulations to calculate the
pressure drop in the channel, the resulting values are underestimated
up to 15 times compared to the SBM predictions.

Application of our proposed model is limited to flows in the Stokes
regime with negligible particle inertia and Brownian motion. It is also
limited to shear-dominated flows, for which it was extensively vali-
dated. Simulations of the suspension flow through an abrupt expansion
showed that the model cannot be directly extended to flows with
more complex kinematics. Despite those limitations, extending our SBM
implementation to flows outside the Stokes regime by including the
inertial terms in the suspension flow momentum equation is straight-
forward. Moreover, all our developments implemented for the SBM are
easily adaptable for an Euler–Euler two-fluid model.
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Appendix A. Grid convergence analysis

See Tables A.15 and A.16.
Table A.15
Estimated uncertainty for the intermediate and finer grids, 𝑈𝑚2 and 𝑈𝑚3, respectively,
and global order of accuracy (𝑝̂𝑔 𝑙 𝑏) on the determination of the dispersed-phase fraction
for all simulated cases. Results are for Solver II for channel flow simulations and Solver
V for pipe and Couette flow.

Geometry 𝑈𝑚2 𝑈𝑚3 𝑝̂𝑔 𝑙 𝑏
Couette rheometer A – 2D 0.46% 0.21% 1.86
Couette rheometer A – 1D 0.05% 0.03% 1.68
Couette rheometer B 0.13% 0.06% 1.80
Couette rheometer C 0.17% 0.09% 1.87
Eccentric Couette flow 1.99% 0.93% 1.86
Two-dimensional channel A – 2D 0.49% 0.25% 1.73
Two-dimensional channel A – 1D 1.07% 0.73% 1.85
Two-dimensional channel B 0.47% 0.33% 1.72
Two-dimensional channel C 0.24% 0.17% 1.66
Two-dimensional channel D 0.18% 0.12% 1.51
Circular cross-section pipe 0.03% 0.02% 1.89

Table A.16
Estimated uncertainty for the intermediate and finer grids, 𝑈𝑚2 and 𝑈𝑚3, respectively,
and global order of accuracy (𝑝̂𝑔 𝑙 𝑏) on the determination of the torque on the inner
cylinder in all Couette geometries using Solver V.

Geometry 𝑈𝑚2 𝑈𝑚3 𝑝̂𝑔 𝑙 𝑏
Couette A 1.60% 0.78% 2.00
Couette B 0.46% 0.22% 2.00
Couette C 0.69% 0.36% 1.85

Appendix B. Anisotropic stress tensor for cylindrical pipe flow

Consider the fully-developed suspension flow at the steady state in
a cylindrical pipe of circular cross-section, for which the directions of
the velocity, its gradient, and vorticity in cylindrical coordinates are 𝐞̂𝑧,
𝐞̂𝑟, and 𝐞̂𝜃 , respectively. Hence, the anisotropic stress tensor is
𝐐 = 𝜆1𝐞̂𝑧𝐞̂𝑧 + 𝜆2𝐞̂𝑟𝐞̂𝑟 + 𝜆3𝐞̂𝜃 𝐞̂𝜃 . (B.1)

We can derive the corresponding equation in Cartesian coordi-
nates using a simple coordinate system transformation. Expressing the
cylindrical unitary vectors in Cartesian coordinates as

𝐞̂𝑟 = cos 𝜃𝐞̂𝑥 + sin 𝜃𝐞̂𝑦, 𝐞̂𝜃 = cos 𝜃𝐞̂𝑦 − sin 𝜃𝐞̂𝑥, (B.2)

Eq. (B.1) becomes

𝐐 =𝜆1𝐞̂𝑧𝐞̂𝑧 +
(

𝜆2 cos2 𝜃 + 𝜆3 sin
2 𝜃

)

𝐞̂𝑥𝐞̂𝑥 +
(

𝜆2 sin
2 𝜃 + 𝜆3 cos2 𝜃

)

𝐞̂𝑦𝐞̂𝑦
+

(

𝜆2 − 𝜆3
)

cos 𝜃 sin 𝜃𝐞̂𝑦𝐞̂𝑥 +
(

𝜆2 − 𝜆3
)

cos 𝜃 sin 𝜃𝐞̂𝑥𝐞̂𝑦.

(B.3)

Therefore, the components of 𝐐 in Cartesian coordinates are:
(𝑎) 𝑄𝑥𝑥 = 𝜆2 cos2 𝜃 + 𝜆3 sin

2 𝜃
(𝑏) 𝑄𝑦𝑦 = 𝜆2 sin

2 𝜃 + 𝜆3 cos2 𝜃
(𝑐) 𝑄𝑥𝑦 = 𝑄𝑦𝑥 =

(

𝜆2 − 𝜆3
)

cos 𝜃
(𝑑) 𝑄𝑧𝑧 = 𝜆1
(𝑒) 𝑄𝑥𝑧 = 𝑄𝑧𝑥 = 𝑄𝑦𝑧 = 𝑄𝑧𝑦 = 0

(B.4)

The components can be visualised by taking 𝜃 = ar ct an (𝑦∕𝑥) and
plotting each field. However, this formulation features a singularity at
𝑟 = 0, where 𝐐 is undefined.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijmultiphaseflow.2024.105120.

Data availability

Our improved SBM solver is available at https://github.com/lausch
latter/An-Improved-Suspension-Balance-Model.
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